Friday, April 27, 2012

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 48

Find $f \circ g \circ h$ if $f(x) = \sqrt{x}$, $\displaystyle g(x) = \frac{x}{x-1}$ and $h(x) = \sqrt[3]{x}$

$
\begin{equation}
\begin{aligned}
(f \circ g \circ h) (x) &= f(g(h(x))) && \text{Definition of } f \circ g \circ h\\
\\
(f \circ g \circ h) (x) &= f \left( g\left(\sqrt[3]{x}\right)\right) && \text{Defintiion of } h\\
\\
(f \circ g \circ h) (x) &= f \left( \frac{\sqrt[3]{x}}{\sqrt[3]{x}-1} \right) && \text{Definition of } g\\
\\
(f \circ g \circ h) (x) &= \sqrt{\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}} && \text{Definition of } f
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...