The derivative of y with respect to is denoted as y' or (dy)/(dx) .
For the given equation: y = arctan(x/2) -1/(2(x^2+4)) ,
we may apply the basic property of derivative:
d/(dx) (u-v) =d/(dx) (u) - d/(dx)(v)
Then the derivative of y will be:
y' = d/(dx)(arctan(x/2) -1/(2(x^2+4)))
y' =d/(dx)(arctan(x/2)) - d/(dx)( 1/(2(x^2+4)))
To find the derivative of the first term: d/(dx)(arctan(x/2)) , recall the basic derivative formula for inverse tangent as:
d/(dx) (arctan(u)) = ((du)/(dx))/(1+u^2)
With u = x/2 and du=(1/2) dx or (du)/(dx) =1/2 , we will have:
d/(dx)(arctan(x/2)) = (1/2) /(1+(x/2)^2)
= (1/2) /(1+(x^2/4))
Express the bottom as one fraction:
d/(dx)(arctan(x/2)) = (1/2) /((x^2+4)/4)
Flip the bottom to proceed to multiplication:
d/(dx)(arctan(x/2)) = 1/2*4/(x^2+4)
= 4/(2(x^2+4))
=2/(x^2+4)
For the derivative of the second term: d/(dx)(1/(2(x^2+4))) , we can rewrite it using the basic property of derivative: d/(dx) (c*f(x)) = c* d/(dx) f(x) where c is constant.
d/(dx)(1/(2(x^2+4))) = (1/2) d/(dx)(1/(x^2+4))
Then apply the Quotient Rule for derivative: d/(dx) (u/v)= (u' * v- v'*u)/v^2 on d/(dx)(1/(2(x^2+4))) .
We let:
u = 1 then u' = 0
v = x^2+4 then v'=2x
v^2= (x^2+4)^2
Applying the Quotient rule, we get:
d/(dx)(1/(2(x^2+4))), = (0*(x^2+4)-(1)(2x))/(x^2+4)^2
=(0-2x)/ (x^2+4)^2
=(-2x)/ (x^2+4)^2
Then (1/2) * d/(dx)(1/(x^2+4)) =(1/2) * (-2x)/ (x^2+4)^2
= -x/ (x^2+4)^2
For the complete problem:
y' =d/(dx)(arctan(x/2)) - d/(dx)( 1/(2(x^2+4)))
y' =2/(x^2+4) + x/ (x^2+4)^2
Saturday, May 19, 2012
Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 58
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment