Thursday, May 31, 2012

Calculus of a Single Variable, Chapter 5, 5.8, Section 5.8, Problem 8

coth^2(x) - csc h^2(x) =1
Take note that hyperbolic cotangent and hyperbolic cosecant are defined as
coth (x) = (e^x+e^(-x))/(e^x-e^(-x))
csc h^2(x) =2/(e^x - e^(-x))
Plugging them, the left side of the equation becomes
((e^x+e^(-x))/(e^x-e^(-x)))^2 -(2/(e^x - e^(-x)) )^2=1
(e^x+e^(-x))^2/(e^x-e^(-x))^2 -2^2/(e^x - e^(-x))^2=1
(e^x+e^(-x))^2/(e^x-e^(-x))^2 -4/(e^x - e^(-x))^2=1
((e^x+e^(-x))^2-4)/(e^x - e^(-x))^2=1
Then, simplify the numerator.
((e^x + e^(-x))(e^x + e^(-x)) - 4)/(e^x- e^(-x))^2=1
(e^(2x)+1+1+e^(-2x) - 4)/(e^x- e^(-x))^2=1
(e^(2x)+2+e^(-2x) - 4)/(e^x- e^(-x))^2=1
(e^(2x) - 2 +e^(-2x)) /(e^x- e^(-x))^2=1
Factoring the numerator, it becomes
((e^x - e^(-x))(e^x-e^(-x)))/(e^x- e^(-x))^2=1
(e^x - e^(-x))^2/(e^x- e^(-x))^2=1
Cancelling common factor, the right side simplifies to
1=1
This verifies that the given equation is an identity.

Therefore, coth^2(x) - csc h^2(x)=1 is an identity.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...