Friday, May 18, 2012

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 31

(a) Guess the value of $\displaystyle \lim \limits_{x \to 0} \frac{x}{\sqrt{1 + 3x} - 1}$ by graphing the function $f\displaystyle (x) = \frac{x}{\sqrt{1 + 3x} - 1}$









Based on the graph, the $\lim\limits_{x \to 0} f(x)$ is approximately equal to 0.66


(b) Estimate the value of the limit by making a table of values of $f(x)$ as $x$ approaches .


$\begin{array}{|c|c|c|c|c|}
\hline
x & f(x) \\
\hline
0.01 & 0.67\\
0.02 & 0.67 \\
0.03 & 0.68 \\
0.04 & 0.69\\
\hline
\end{array} $

Based on the values from the table, the limit of the function seems to have a value of 0.67 as $x$ approaches to 0.
(c) Prove that your guess is correct by using the limit laws.



$
\begin{equation}
\begin{aligned}

& \lim \limits_{x \to 0} \frac{x}{\sqrt{1 + 3x } - 1} \cdot \frac{\sqrt{1 + 3x} + 1}{\sqrt{1 + 3x} + 1}
= \lim \limits_{x \to 0} \frac{x(\sqrt{1 + 3x} + 1)}{1 + 3x - 1}
&& \text{ Simplify the equation by multiplying both numerator and denominator by $\sqrt{1 + 3x} + 1$}\\

& \lim \limits_{x \to 0} \left( \frac{\sqrt{1 + 3x} + 1}{3} \right)
= \frac{1}{3}\lim \limits_{x \to 0} (\sqrt{1 + 3x} + 1)
&& \text{ Constant multiple law.}\\

& \lim \limits_{x \to 0} \left( \frac{\sqrt{1 + 3x} + 1}{3} \right)
= \frac{1}{3} \left( \sqrt{\lim \limits_{x \to 0} 1 + \lim \limits_{x \to 0} 3x} + \lim \limits_{x \to 0} 1 \right)
&& \text{ Sum and root law.}\\

& \lim \limits_{x \to 0} \left( \frac{\sqrt{1 + 3x} + 1}{3} \right)
= \frac{1}{3} \left( \sqrt{1 + 3 \lim \limits_{x \to 0}} + 1 \right)
&& \text{ Sum, constant multiple and special limit law.}\\

& \lim \limits_{x \to 0} \left( \frac{\sqrt{1 + 3x} + 1}{3} \right)
= \frac{1}{3} \left( \sqrt{1 + 3(0)} + 1 \right)
&& \text{ Special limit and constant law.}\\

& \fbox{$ \lim \limits_{x \to 0} \displaystyle \left( \frac{\sqrt{1 + 3x} + 1}{3} \right) = \frac{2}{3} \text{ or } 0.67$}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...