Thursday, May 31, 2012

Calculus of a Single Variable, Chapter 7, 7.2, Section 7.2, Problem 6

For the region bounded by y=2 and y =4-x^2/4 revolved about the x-axis, we may apply Washer method for the integral application for the volume of a solid.
As shown on the attached image, we are using vertical rectangular strip that is perpendicular to the x-axis (axis of revolution) with a thickness of "dx" . In line with this, we will consider the formula for the Washer Method as:
V = pi int_a^b [(f(x))^2-(g(x))^2]dx
where f(x) as function of the outer radius, R
g(x) as a function of the inner radius, r
For each radius, we follow the y_(above) - y_(below) , we have y_(below)=0 since it a distance between the axis of rotation and each boundary graph.
For the inner radius, we have: g(x) =2-0=2
For the outer radius, we have: f(x) =(4-x^2/4 )-0=4-x^2/4

To determine the boundary values of x, we equate the two values of y's:
4-x^2/4 =2
-x^2/4 =2-4
-x^2/4 =-2
(-4)(-x^2/4 ) =(-4)(-2)
x^2=8 then x= +-sqrt(8) or +2sqrt(2) and -2sqrt(2)
Then, boundary values of x: a=-2sqrt(2) and b=2sqrt(2) .
Plug-in the values in the formula V = pi int_a^b( (f(x))^2 -(g(x))^2) dx , we get:
V =pi int_(-2sqrt(2))^(2sqrt(2)) [(4-x^2/4)^2 -2^2]dx .

Expand using the FOIL method on: (4-x^2/4)^2 = (4-x^2/4)(4-x^2/4)= 16-2x^2+x^4/16 and 2^2=4 .
The integral becomes:
V =pi int_(-2sqrt(2))^(2sqrt(2)) [16-2x^2+x^4/16 -4]dx
V =pi int_(-2sqrt(2))^(2sqrt(2)) [12-2x^2+x^4/16 ]dx
Apply basic integration property: int (u+-v+-w)dx = int (u)dx+-int (v)dx+-int(w)dx to be able to integrate them separately using Power rule for integration: int x^n dx = x^(n+1)/(n+1) .
V =pi *[int_(-2sqrt(2))^(2sqrt(2))(12) dx -int_(-2sqrt(2))^(2sqrt(2)) (2x^2) dx + int_(-2sqrt(2))^(2sqrt(2)) (x^4/16)dx]
V =pi *[12x-2 *x^3/3+1/16*x^5/5 ]|_(-2sqrt(2))^(2sqrt(2))
V =pi *[12x-(2x^3)/3+x^5/80 ]|_(-2sqrt(2))^(2sqrt(2))
Apply the definite integral formula: int _a^b f(x) dx = F(b) - F(a) .
V =pi *[12(2sqrt(2))-(2(2sqrt(2))^3)/3+(2sqrt(2))^5/80 ]-pi *[12(-2sqrt(2))-(2(-2sqrt(2))^3)/3+(-2sqrt(2))^5/80 ]
V =pi *[24sqrt(2)-(32sqrt(2))/3+(8sqrt(2))/5 ] -pi *[-24sqrt(2)+(32sqrt(2))/3-(8sqrt(2))/5 ]
V =(224sqrt(2)pi)/15 -(-224sqrt(2)pi)/15
V =(224sqrt(2)pi)/15 +(224sqrt(2)pi)/15
V =(448sqrt(2)pi)/15 or 132.69 (approximated value)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...