Friday, June 22, 2012

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 48

Solve the Logarithmic Equation $\log_5 x + \log_5 ( x + 1) = \log_ 5 20$ for $x$.

$
\begin{equation}
\begin{aligned}
\log_5 x + \log_5 ( x + 1) &= \log_ 5 20\\
\\
\log_5 x (x + 1) &= \log_5 20 && \text{Laws of Logarithms } \log_a AB = \log_a A + \log_a B\\
\\
5^{\log_5 x ( x + 1)} &= 5^{\log_5 20} && \text{Raise 5 to each side}\\
\\
x (x + 1) &= 20 && \text{Property of } \log\\
\\
x^2 + x &= 20 && \text{Distributive Property}\\
\\
x^2 + x - 20 &= 0 && \text{Subtract 20}\\
\\
(x - 4)(x + 5) &= 0
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{equation}
\begin{aligned}
x -4 &= 0 &&\text{and}& x + 5 &= 0 \\
\\
x &= 4 &&& x &= -5
\end{aligned}
\end{equation}
$

The only solution in the given equation is $x = 4$, since $x = -5$ will make the term a negative value.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...