Monday, June 25, 2012

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 41

Determine the limit $\lim\limits_{x \rightarrow 0.5^-} \displaystyle \frac{2x-1}{|2x^3-x^2|}$, if it exists. If the limit does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 0.5^-} \displaystyle \frac{2x-1}{|2x^3-x^2|} & = \lim\limits_{x \rightarrow 0.5^-} \displaystyle \left[ \frac{2x-1}{-(2x^3-x^2)}\right]
= \lim\limits_{x \rightarrow 0.5^-} \displaystyle \frac{\cancel{2x-1}}{-\cancel{(2x-1)}(x^2)} && \text{(Get the factor and simplify)}\\
\lim\limits_{x \rightarrow 0.5^-} \displaystyle \frac{1}{-x^2} & = -\frac{1}{(0.5)^2} && \text{(Substitute value of } x)
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 0.5^-} \displaystyle \frac{2x-1}{|2x^3-x^2|} = -4}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...