Tuesday, March 26, 2013

Precalculus, Chapter 1, Review Exercises, Section Review Exercises, Problem 24

Determine the center and radius of the circle $x^2 + y^2 + 4x - 4y - 1 = 0$. Graph the circle. Find the intercepts, if any.

We complete the square in both $x$ and $y$ to put the equation in standard form


$
\begin{equation}
\begin{aligned}

x^2 + y^2 + 4x - 4y - 1 =& 0
&& \text{Given equation}
\\
(x^2 + 4x) + (y^2 - 4y) =& 1
&& \text{Group the equation in terms of $x$ and $y$. And put the consistent on the right side of the equation}
\\
(x^2 + 4x + 4) + (y^2 - 4y + 4) =& 1 + 4 + 4
&& \text{Complete the square: add } \left( \frac{4}{2} \right)^2 = 4 \text{ and } \left( \frac{4}{2} \right)^2 = 4 \text{ on both sides of the equation}
\\
(x + 2)^2 + (y - 2)^2 =& 9
&& \text{Factor}

\end{aligned}
\end{equation}
$


We recognize this equation as the standard form of the equation of a circle with $r=3$ and center $(-2,2)$







To find the $x$-intercepts, we let $y = 0$. Then


$
\begin{equation}
\begin{aligned}

& (x + 2)^2 + (y-2)^2 = 9
&&
\\
& (x + 2)^2 + (0-2)^2 = 9
&& y = 0
\\
& (x + 2)^2 + 4 = 9
&& \text{Simplify}
\\
& (x + 2)^2 = 5
&& \text{Apply the Square Root Method}
\\
& x + 2 = \pm \sqrt{5}
&& \text{Solve for } x
\\
& x = -2 \pm \sqrt{5}
&&

\end{aligned}
\end{equation}
$


The $x$-intercepts are $-2 + \sqrt{5}$ and $-2- \sqrt{5}$.

To find the $y$-intercepts, we let $x = 0$. Then


$
\begin{equation}
\begin{aligned}

& (x + 2)^2 + (y-2)^2 = 9
&& \text{Given equation}
\\
& (0 + 2)^2 + (y-2)^2 = 9
&& x = 0
\\
& 4 + (y - 2)^2 = 9
&& \text{Simplify}
\\
& (y-2)^2 = 5
&& \text{Apply the Square Root Method}
\\
& y - 2 = \pm \sqrt{5}
&& \text{Solve for } y
\\
& y = 2 \pm \sqrt{5}
&&

\end{aligned}
\end{equation}
$


The $y$-intercepts are $2 + \sqrt{5}$ and $2 - \sqrt{5}$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...