Wednesday, March 20, 2013

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 40

Determine the equation of the tangent line to the curve $\displaystyle y = 3 \arccos \left( \frac{x}{2} \right)$ at the point $(1, \pi)$.
If $\displaystyle y = 3 \arccos \left( \frac{x}{2} \right)$, then...

$
\begin{equation}
\begin{aligned}
y' &= -3 \left( \frac{\frac{d}{dx}\left(\frac{x}{2}\right) }{\sqrt{1-\left(\frac{x}{2}\right)^2}} \right)\\
\\
y' &= -3 \left( \frac{\frac{1}{2}}{\sqrt{1 - \frac{x^2}{4}}} \right)\\
\\
y' &= \frac{-3}{2} \left( \frac{1}{\sqrt{\frac{4-x^2}{4}}} \right)\\
\\
y' &= \frac{-3}{2} \left( \frac{\frac{1}{\sqrt{4-x^2}}}{2}\right)\\
\\
y' &= \frac{-3}{\sqrt{4-x^2}}
\end{aligned}
\end{equation}
$

Recall that the first derivative is equatl to the slope of the tangent line at some point. So at point $(1,\pi)$
$\displaystyle y' = \frac{-3}{\sqrt{4-(1)^2}} = \frac{-3}{\sqrt{3}} = m$


Thus, the equation of the tanget line can be determined by using the point slope form.

$
\begin{equation}
\begin{aligned}
y-y_1 &= m(x-x_1)\\
\\
y - \pi &= \frac{-3}{\sqrt{3}} (x - 1)\\
\\
y &= \frac{-3}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \pi \qquad \text{ or } \qquad y = -\sqrt{3} x + \sqrt{3} + \pi
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...