Sunday, March 17, 2013

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 90

For what values of $a$ and $b$ is $\displaystyle \lim_{x \to 0} \left( \frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0$
$\displaystyle \lim_{x \to 0} \left( \frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0 = \lim_{x \to 0} \frac{\sin 2x + ax^3 + bx}{x^3}$
By applying L'Hospital's Rule
$\displaystyle \lim_{x \to 0} \frac{\sin 2x + ax^3 + bx}{x^3} = \lim_{x \to 0} \frac{2\cos 2x + 3ax^2 + b}{3x^2}$

If we evaluate the limit, we will still get an indeterminate form, so we must apply L'Hospital's Rule until the limit will not result to an indeterminate form.
$\displaystyle \lim_{x \to 0} \frac{2 \cos 2x + 3ax^2 + b}{3x^2} = \lim_{x \to 0} \frac{-4\sin 2x + 6ax}{6x}$
Again, by applying L'Hospital's Rule
$\displaystyle \lim_{x \to 0} \frac{-4\sin 2x + 6ax}{6x} = \lim_{x \to 0} \frac{-4(\cos^2 x)(2) + 69}{6}$

So,

$\displaystyle \lim_{x \to 0} \frac{-4(\cos^2 x)(2) + 69}{6} = 0 $

$
\begin{equation}
\begin{aligned}
-4\cos 2(0)(2) + 6a &= 0 \\
\\
-8 \cos (0) + 6a &= 0\\
\\
-8(1) + 6a &= 0\\
\\
a &= \frac{4}{3}
\end{aligned}
\end{equation}
$


Recall that,

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{2 \cos 2x + 3ax^2 + b}{3x^2} &= 0 \\
\\
2 \cos 2x + 3ax^2 + b &= 0\\
\\
2 \cos 2(0) + 3 \left( \frac{4}{3} \right) (0)^2 + b &= 0\\
\\
2(1) + 0 + b &= 0\\
\\
b &= -2
\end{aligned}
\end{equation}
$


Therefore, we have $\displaystyle a = \frac{4}{3}$ and $b = -2$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...