Sunday, March 17, 2013

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 2

Suppose that
$\displaystyle \lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} \quad \lim_{x \to a} h(x) = 1$
$\displaystyle \lim_{x \to a} p(x) = \infty \quad \lim_{x \to a} q(x) = \infty$

Which of the following limits are indeterminate form? Evaluate the limit if possible, for those that are not an indefinite form.

a.) $\displaystyle \lim_{x \to a} [f(x) p(x)]$
b.) $\displaystyle \lim_{x \to a} [h(x) p(x)]$
c.) $\displaystyle \lim_{x \to a} [p(x) q(x)]$


$
\begin{equation}
\begin{aligned}
\text{a.) } \lim_{x \to a} [f(x) p(x)] &= \lim_{x \to a} f(x) \cdot \lim_{x \to a} p(x)\\
\\
&= 0 \cdot \infty\\
\\
&= \frac{1}{\infty} \cdot \infty\\
\\
&= \frac{\infty}{\infty} (\text{indeterminate})\\
\\
\text{b.) } \lim_{x \to a} [h(x) p(x)] &= \lim_{x \to a} h(x) \cdot \lim_{x \to a} p(x)\\
\\
&= 1 \cdot \infty\\
\\
&= \infty\\
\\
\text{c.) } \lim_{x \to a} [p(x) q(x)] &= \lim_{x \to a} p(x) \cdot \lim_{x \to a} q(x)\\
\\
&= \infty \cdot \infty\\
\\
&= \infty
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...