Friday, May 17, 2013

y = xarctan(2x)-1/4ln(1+4x^2) Find the derivative of the function

The derivative of y in terms of x is denoted by  (dy)/(dx) or y’'
 For the given problem: y = xarctan(2x) -1/4ln(1+4x^2) , we may apply the basic differentiation property:
d/(dx) (u-v) = d/(dx) (u) - d/(dx) (v)
Then the derivative of the function can be set-up as:
d/(dx)y =d/(dx)[ xarctan(2x) -1/4ln(1+4x^2)]
y ' = d/(dx) xarctan(2x) -d/(dx) 1/4ln(1+4x^2)
 
For the derivative of d/(dx)[ xarctan(2x) , we apply the Product Rule: d/(dx)(u*v) = u’*v =+u*v’ .
d/(dx)[ xarctan(2x)] = d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x) .
Let u=x then u' = 1
   v=arctan(2x) then dv= 2/(4x^2+1)
Note: d/(dx)arctan(u)= (du)/(u^2+1)
 
Then,
d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x)
= 1 * arctan(2x) +x * 2/(4x^2+1)
= arctan(2x) +(2x)/(4x^2+1)
 
For the derivative of  d/(dx) 1/4ln(1+4x^2) , we apply the basic derivative property:
d/(dx) c*f(x) = c d/(dx) f(x) .
Then,
d/(dx) 1/4ln(1+4x^2)= 1/4 d/(dx) ln(1+4x^2)
Apply the basic derivative formula for natural logarithm function: d/(dx) ln(u)= (du)/u .
 Let u =1+4x^2 then du = 8x
1/4d/(dx) ln(1+4x^2) = 1/4 *8x/(1+4x^2)
                              =(2x)/(1+4x^2)
 
Combining the results, we get:
y' = d/(dx)[ xarctan(2x)] -d/(dx)[ 1/4ln(1+4x^2)]
y ' = [arctan(2x) +(2x)/(4x^2+1)] - (2x)/(1+4x^2)
y ' = arctan(2x) +(2x)/(4x^2+1) - (2x)/(1+4x^2)
y ' = arctan(2x) +0
y'=arctan(2x)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...