Monday, September 8, 2014

Calculus: Early Transcendentals, Chapter 3, 3.4, Section 3.4, Problem 49

Using the product rule:
d/dx f(x)g(x) = f'(x)g(x) + f(x)g'(x)
y'= d/dx [e^(alpha x) sin (beta x)]
= e^(alpha x) * alpha * sin(beta x) + e^(alpha x) * cos(beta x)* beta
= e^(alpha x) *[alpha sin(beta x) + beta * cos (beta x)]
y'' = d/dx (e^(alpha x)) * [alpha sin (beta x) + beta cos (beta x)]
+ e^(alpha x) d/dx [alpha sin(betax) + beta cos(betax)]
= alpha e^(alphax) * [alpha sin(beta x)+ beta cos(betax)]
+e^(alpha x)*[alpha*beta cos(beta x)-beta^2 sin(betax)]
= e^(alpha x) *[(alpha^2-beta^2)sin(betax) + 2alphabeta cos(betax)]
hope this helps.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...