Wednesday, September 3, 2014

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 32

Find all real solutions of the equation $\displaystyle 2x + \sqrt{x + 1} = 8$


$
\begin{equation}
\begin{aligned}

2x + \sqrt{x + 1} =& 8
&& \text{Given}
\\
\\
\sqrt{x + 1} =& 8 - 2x
&& \text{Subtract } 2x
\\
\\
(\sqrt{x + 1})^2 =& (8 - 2x)^2
&& \text{Square both sides}
\\
\\
x + 1 =& 64 - 32x + 4x^2
&& \text{Combine like terms}
\\
\\
4x^2 - 33x + 63 =& 0
&& \text{Subtract } 63
\\
\\
4x^2 - 33x =& -63
&& \text{Divide both sides by } 4
\\
\\
x^2 - \frac{-33x}{4} =& \frac{-63}{4}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-33}{4}}{2} \right)^2 = \frac{1089}{64}
\\
\\
x^2 - \frac{33x}{4} + \frac{1089}{64} =& \frac{-63}{4} + \frac{1089}{64}
&& \text{Perfect square}
\\
\\
\left(x - \frac{33}{8} \right)^2 =& \frac{81}{64}
&& \text{Take the square root}
\\
\\
x - \frac{33}{8} =& \pm \sqrt{\frac{81}{64}}
&& \text{Add } \frac{33}{8} \text{ and simplify}
\\
\\
x =& \frac{33}{8} \pm \frac{9}{8}
&& \text{Evaluate}
\\
\\
x =& \frac{21}{4} \text{ and } x = 3
&& \text{Solve for } x
\\
\\
x =& 3
&& \text{The only solution that satisfy the equation } 2x \sqrt{x + 1} = 8

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...