Monday, September 1, 2014

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 44

Differentiate $\displaystyle y = \frac{(x^2 + 1)^4}{(2x + 1)^3 (3x - 1)^5}$


$
\begin{equation}
\begin{aligned}

\ln y =& \ln \left[ \frac{(x^2 + 1)^4}{(2x + 1)^3 (3x - 1)^5} \right]
\\
\\
\ln y =& \ln (x^2 + 1)^4 - [\ln (2x + 1)^3 + \ln (3x - 1)^5]
\\
\\
\ln y =& 4 \ln (x^2 + 1) - 3 \ln (2x + 1) - 5 \ln (3x - 1)
\\
\\
\frac{d}{dx} (\ln y) =& 4 \frac{d}{dx} [\ln (x^2 + 1)] - 3 \frac{d}{dx} [\ln (2x + 1)] - 5 \frac{d}{dx} [\ln (3x - 1)]
\\
\\
\frac{1}{y} \frac{dy}{dx} =& 4 \cdot \frac{1}{x^2 + 1} \frac{d}{dx} (x^2 + 1) - 3 \cdot \frac{1}{2x + 1} \frac{d}{dx} (2x + 1) - 5 \cdot \frac{1}{3x - 1} \frac{d}{dx} (3x - 1)
\\
\\
\frac{1}{y} y' =& \frac{4}{x^2 + 1} \cdot 2x - \frac{3}{2x + 1} \cdot 2 - \frac{5}{3x - 1} \cdot 3
\\
\\
\frac{y'}{y} =& \frac{8x}{x^2 + 1} - \frac{6}{2x + 1} - \frac{15}{3x - 1}
\\
\\
y' =& y \left( \frac{8x}{x^2 + 1} - \frac{6}{2x + 1} - \frac{15}{3x - 1} \right)
\\
\\
y' =& \frac{(x^2 + 1)^4}{(2x + 1)^3 (3x - 1)^5} \left( \frac{8x}{x^2 + 1} - \frac{6}{2x + 1} - \frac{15}{3x - 1} \right)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...