Wednesday, March 11, 2015

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 30

Suppose the matrices $A, B, C, D, E, F, G$ and $H$ are defined as



$
\begin{equation}
\begin{aligned}


A =& \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array}
\right]

&& B = \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

&&& C = \left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]

&&&& D = \left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\\
\\
\\
\\
E =& \left[ \begin{array}{c}
1 \\
2 \\
0
\end{array}
\right]

&& F = \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\right]

&&& G = \left[ \begin{array}{ccc}
5 & -3 & 10 \\
6 & 1 & 0 \\
-5 & 2 & 2
\end{array} \right]

&&&& H = \left[ \begin{array}{cc}
3 & 1 \\
2 & -1
\end{array} \right]


\end{aligned}
\end{equation}
$


Carry out the indicated algebraic operation, or explain why it cannot be performed.

a.) $B^2$


$
\begin{equation}
\begin{aligned}

B^2 =& BB = \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

\left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

\end{aligned}
\end{equation}
$


But the product of the matrices $B$ and $B$ can not be solve because the number of columns of the first matrix must equal the number of rows of the second matrix.

b.) $F^2$

$\displaystyle F^2 = \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
$


$
\begin{equation}
\begin{aligned}

& \text{Entry}
&& \text{Inner Product of}
&&& \text{Value}
&&&& \text{Matrix}
\\
\\
& C_{11}
&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 1
&&&& \left[ \begin{array}{ccc}
1 & & \\
& & \\
& &
\end{array} \right]

\\
\\
\\

& C_{12}
&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & \\
& & \\
& &
\end{array} \right]

\\
\\
\\

& C_{13}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
& & \\
& &
\end{array} \right]

\\
\\
\\


& C_{21}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & & \\
& &
\end{array} \right]

\\
\\
\\

& C_{22}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \\
& &
\end{array} \right]

\\
\\
\\

& C_{23}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
& &
\end{array} \right]

\\
\\
\\

& C_{31}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & &
\end{array} \right]

\\
\\
\\

& C_{32}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 &
\end{array} \right]

\\
\\
\\

& C_{33}
&&\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
&&& 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 0
&&&& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...