Tuesday, March 17, 2015

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 87

Show that $\displaystyle \frac{d}{d \theta} (\sin \theta) = \frac{\pi}{180} \cos \theta$ by using Chain Rule such that $\theta$ is measured in degrees.


$
\begin{equation}
\begin{aligned}

\frac{d}{d \theta} =& \frac{d}{d \theta} \left( \sin \frac{\pi}{180} \theta \right) \text{ with $\theta$ in radians. So,}
\\
\\
\frac{d}{d \theta} \left( \sin \frac{\pi}{180} \theta \right) =& \frac{d}{d\left( \frac{\pi \theta}{180} \right) } \left( \sin \frac{\pi}{180} \theta \right)
\\
\\
\frac{d}{d \theta} \left( \sin \frac{\pi}{180} \theta \right) =& \cos \frac{\pi \theta}{180} \cdot \frac{d}{d \theta} \left( \frac{\pi \theta}{180} \right)
\\
\\
\frac{d}{d \theta} \left( \sin \frac{\pi}{180} \theta \right) =& \cos \frac{\pi \theta}{180} \cdot \frac{\pi}{180} = \frac{\pi}{180} \cdot \cos \left( \frac{\pi \theta}{180} \right)
\\
\\

\end{aligned}
\end{equation}
$




But we have in degrees,

$\displaystyle \frac{d}{d \theta} \left( \sin \frac{\pi}{180} \theta \right) = \frac{\pi}{180} \cdot \cos \theta$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...