Tuesday, March 10, 2015

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 22

Suppose that $g(x) + x \sin g(x) = x^2$, find $g'(0)$
Solving for $g(0)$

$\displaystyle\frac{d}{dx} [ g(x) ] + \frac{d}{dx} [x \sin g(x)] = \frac{d}{dx} (x^2)$

$
\begin{equation}
\begin{aligned}
\frac{d}{dx} [g(x)] + \left[ (x) \frac{d}{dx} [ \sin g(x)] + [ \sin g(x) ] \frac{d}{dx} (x) \right] &= \frac{d}{dx} (x^2)\\
\\
g'(x) + (x) [ \cos g(x) ] \frac{d}{dx} [ g(x) ] + [ \sin g(x)] (1) &= 2x\\
\\
g'(x) + (x) [g'(x)] [ \cos g(x)] + \sin g(x) &= 2x
\end{aligned}
\end{equation}
$


If $x = 0 $


$
\begin{equation}
\begin{aligned}
g(0) + (0) \sin g(0) &= (0)^2\\
\\
g(0) &= 0\\
\\
g'(0) + (0) [g'(0)] [\cos g(0)] + \sin g(0) &= 2(0)\\
\\
g'(0) + 0 + 0 &= 0\\
\\
g'(0) &= 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...