Sunday, January 24, 2016

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 36

Solve the system $\left\{\begin{equation}
\begin{aligned}

\frac{1}{2} x + \frac{1}{3} y =& 1
\\
\\
\frac{1}{4} x - \frac{1}{6}y =& \frac{-3}{2}

\end{aligned}
\end{equation} \right.$ using Cramer's Rule.

For this system we have


$
\begin{equation}
\begin{aligned}

|D| =& \left| \begin{array}{cc}
\displaystyle \frac{1}{2} & \displaystyle \frac{1}{3} \\
\displaystyle \frac{1}{4} & \displaystyle \frac{-1}{6}
\end{array} \right| = \frac{1}{2} \cdot \left( \frac{-1}{6} \right) - \frac{1}{3} \cdot \frac{1}{4} = \frac{-1}{6}
\\
\\
|D_{x}| =& \left| \begin{array}{cc}
1 & \displaystyle \frac{1}{3} \\
\displaystyle \frac{-3}{2} & \displaystyle \frac{-1}{6}
\end{array} \right| = 1 \cdot \left( \frac{-1}{6} \right) - \frac{1}{3} \cdot \left( \frac{-3}{2}\right) = \frac{1}{3}
\\
\\
|D_{y}| =& \left| \begin{array}{cc}
\displaystyle \frac{1}{2} & 1 \\
\displaystyle \frac{1}{4} & \displaystyle \frac{-3}{2}
\end{array} \right| = \frac{1}{2} \cdot \left( \frac{-3}{2} \right) - 1 \cdot \frac{1}{4} = -1

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& \frac{|D_x|}{|D|} = \frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{-1}{6}} = 2
\\
\\
y =& \frac{|D_y|}{|D|} = \frac{-1}{\displaystyle \frac{-1}{6}} = 6

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...