Friday, February 26, 2016

College Algebra, Chapter 5, 5.5, Section 5.5, Problem 10

There are 400 bacteria's after 2 hours and 25,600 after 6 hours in a culture.

a.) Identify the relative growth rate of the bacteria population? Express your answer in percentage.

b.) Determine the initial size of the culture?

c.) Find a function that will model the number of bacteria n(t) after t hours.

d.) What will be the number of bacteria after 4.5hours?

e.) When will the number of bacteria be 50,000?



a.) Recall the formula for growth rate

$n(t) = n_0 e^{rt}$

where

$n(t)$ = population at time $t$

$n_0$ = initial size of the population

$r$ = relative rate of growth

$t$ = time



$
\begin{equation}
\begin{aligned}

\text{if } n(2) =& 400, \text{ then}
&& \text{and}&
\text{if } n(6) =& 25600 \text{ then}
\\
\\
400 =& n_0 e^{r(2)}
&& &
25600 =& n_0 e^{r(6)}
\\
\\
n_0 =& \frac{400}{e^{2r}} \qquad \text{Equation 1}
&& &
n_0 =& \frac{25600}{e^{6r}} \qquad \text{Equation 2}

\end{aligned}
\end{equation}
$


By using equations 1 and 2,


$
\begin{equation}
\begin{aligned}

\frac{400}{e^{2r}} =& \frac{25600}{e^{6r}}
&& \text{Multiply both sides by $e^{6r}$ and divide each side by } 400
\\
\\
\frac{e^{6r}}{e^{2r}} =& \frac{25600}{400}
&& \text{Apply Property of Exponents}
\\
\\
e^{4r} =& 64
&& \text{Take $\ln$ of each sides}
\\
\\
4r =& \ln (64)
&& \text{Recall } \ln e = 1
\\
\\
r =& \frac{\ln (64)}{4}
&& \text{Solve for } r
\\
\\
r =& 1.0397 \times 100 \%
&& \text{Express as a percentage}
\\
\\
r =& 103.97 \%
&&

\end{aligned}
\end{equation}
$


b.) By using equation 1


$
\begin{equation}
\begin{aligned}

n_0 =& \frac{400}{e^{2(1.0397)}}
\\
\\
n_0 =& 50

\end{aligned}
\end{equation}
$


c.) By substituting all the acquired information in the general equation, we have

$n(t) = 50e^{1.0397 t}$

d.)


$
\begin{equation}
\begin{aligned}

\text{if } t =& 4.5 \text{ hours, then}
\\
\\
n(4.5) =& 50 e^{1.0397 (4.5)}
\\
\\
n(4.5) =& 5381.23 \text{ or } 5381

\end{aligned}
\end{equation}
$


e.)


$
\begin{equation}
\begin{aligned}

\text{if } n(t) = 50,000 \text{ then}
&&
\\
\\
50,000 =& 50 e^{1.0397 (t)}
&& \text{Divide each side by } 50
\\
\\
1000 =& e^{1.0397(t)}
&& \text{Take $\ln$ of each side}
\\
\\
\ln (1000) =& 1.0397 t
&& \text{Recall } \ln e = 1
\\
\\
t =& \frac{\ln (1000)}{1.0397}
&& \text{Solve for } t
\\
\\
t =& 6.64 \text{ hours}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...