Friday, February 19, 2016

College Algebra, Chapter 8, 8.3, Section 8.3, Problem 40

Find an equation for the hyperbola with foci $(\pm 3, 0)$ and passes through $(4,1)$.
The hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has foci $(\pm c,0)$. So, the value of
$c$ is $3$. Thus, the first equation gives us $a^2 + b^2 = 9$. Also, if the hyperbola passes through the given point, then the point is a
solution to the equation,

$
\begin{equation}
\begin{aligned}
\frac{(4)^2}{a^2} - \frac{(1)^2}{b^2} &= 1 && \text{Substitute the given}\\
\\
\frac{16}{a^2} - \frac{1}{b^2} &= 1 && \text{Evaluate}\\
\\
\frac{16}{a^2} &= \frac{1}{b^2} + 1 && \text{Add } \frac{1}{b^2}\\
\\
16b^2 &= a^2 + a^2 b^2 && \text{Multiply } a^2 b^2\\
\\
a^2 &= \frac{16b^2}{1 + b^2} && \text{Simplify, thus gives us the second equation}
\end{aligned}
\end{equation}
$

By substituting the second equation to the first equation, we get

$
\begin{equation}
\begin{aligned}
\frac{16b^2}{1+b^2} + b^2 &=9 && \text{Multiply } (1 + b^2)\\
\\
16b^2 + b^2 + b^4 &= 9 + 9b^2 && \text{Simplify and combine like terms}\\
\\
b^4 + 8b^2 &= 9 && \text{Subtract 9}\\
\\
b^4 + 8b^2 - 9 &= 0 && \text{Factor}\\
\\
(b^2+9)(b^2-1) &= 0 && \text{Zero Product Property}\\
\\
b^2 + 9 &= 0 \text{ and } b^2 - 1 = 0 && \text{Choose the value of $b$ that will give real roots}\\
\\
b^2 -1 &= 0 && \text{Solve for } b^2\\
\\
b^2 &= 1
\end{aligned}
\end{equation}
$

We back substitute $b^2$to the Equation, we have

$
\begin{equation}
\begin{aligned}
a^2 + 1 &= 9 && \text{Solve for } a^2\\
\\
a^2 &= 8
\end{aligned}
\end{equation}
$

Therefore, the equation is
$\displaystyle \frac{x^2}{8} - y^2 = 1$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...