Wednesday, September 21, 2016

Single Variable Calculus, Chapter 7, 7.3-1, Section 7.3-1, Problem 66

Determine the equation of the tangent line to the curve $y = e^{-x}$ that is perpendicular to the line $2x - y = 8$

Since the tangent line is perpendicular to the tangent line, its slope is equal to the negative reciprocal of the perpendicular line. So..

$M_T = - \frac{1}{M_N}$

Solving for $M_N$


$
\begin{equation}
\begin{aligned}

& zx - y = 8
\\
& y = 2x - 8

\end{aligned}
\end{equation}
$


By observation, $M_N = 2$, hence, $\displaystyle M_T = -\frac{1}{2}$

Also, recall that the first derivative is equal to the slope of the tangent line at the curve, so..


$
\begin{equation}
\begin{aligned}

\text{if } y =& e^{-x}, \text{then}
\\
\\
y' =& e^{-x} (-1)

\end{aligned}
\end{equation}
$


Thus,


$
\begin{equation}
\begin{aligned}

\frac{-1}{2} =& -e^{-x}
\\
\\
\frac{1}{2} =& \frac{1}{e^x}
\\
\\
e^x =& 2

\end{aligned}
\end{equation}
$


Taking the natural logarithm of both sides..


$
\begin{equation}
\begin{aligned}

x (ln e) =& ln (2)
\\
\\
x(1) =& ln (2)
\\
\\
x =& ln (2)

\end{aligned}
\end{equation}
$


So when $x = ln(2)$, then...


$
\begin{equation}
\begin{aligned}

y =& e^{-x} = \frac{1}{e^x}
\\
\\
y =& \frac{1}{e^{e^{ln2}}} = \frac{1}{2}

\end{aligned}
\end{equation}
$


Therefore, by using point slope form, the equation of the tangent line is..


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
\\
\\
y - \frac{1}{2} =& \frac{-1}{2} (x - ln(2))
\\
\\
y =& \frac{-1}{2} x + \frac{ln (2)}{2} + \frac{1}{2}
\\
\\
y =& \frac{-x}{2} + \frac{ln(2) + 1}{2}



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...