Monday, September 12, 2016

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 12

Show that $\cos h(x + y) = \cos h x \cos h y + \sin h x \sin h y$

Solving for the left-hand side of the equation

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

\cos h x =& \frac{e^x + e^{-x}}{2}
\\
\\
\cos h (x + y) =& \frac{e^{(x + y)} + e^{- (x + y)} }{2}
\\
\\
\cos h (x + y) =& \frac{e^{(x + y)} + e^{(-x-y)} }{2}
\\
\\
\cos h (x + y) =& \frac{e^x e^y + e^{-x} e^{-y}}{2}

\end{aligned}
\end{equation}
$


Using the Identities


$
\begin{equation}
\begin{aligned}

\cos h x + \sin h x =& e^x \text{ and } \cos h x - \sin h x = e^{-x}
\\
\\
\cos h (x + y) =& \frac{(\cos h x + \sin h x)(\cos hy + \sin h y) + (\cos hx - \sin hx)(\cos hy - \sin hy) }{2}
\\
\\
\cos h (x + y) =& \frac{\cos h x \cos hy + \cancel{\cos h x \sin h y} + \cancel{\cos hy \sin hx} + \sin hx \sin hy + \cos hx \cos hy - \cancel{\cos h x \sin h y} -\cancel{\cos hy \sin hx} + \sin hx \sin hy }{2}
\\
\\
\cos h (x + y) =& \frac{2 \cos hx \cos hy + 2 \sin hx \sin hy}{2}
\\
\\
\cos h (x + y) =& \frac{\cancel{2} (\cos hx \cos hy + \sin hx \sin hy)}{\cancel{2}}
\\
\\
\cos h(x + y) =& \cos hx \cos hy + \sin hx \sin hy


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...