Wednesday, September 14, 2016

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 68

Prove that $\displaystyle \int^\pi_{-\pi} \sin (mx) \sin (nx) dx = \left\{
\begin{array}{c}
0 & \text{if} & m \neq n\\
\pi & \text{if} & m = n
\end{array}\right.
$


where $m$ and $n$ are positive integers.
If we use the sum and difference angles formula for cosine, we get


$
\begin{equation}
\begin{aligned}
\cos (mx - nx) &= \cos (mx) \cos (nx) - \sin (mx) \sin (nx) \qquad \text{and}\\
\\
\cos (mx + nx) &= \cos (mx) \cos (nx) + \sin (mx) \sin (nx)
\end{aligned}
\end{equation}
$

Then, $\cos (mx - nx) - \cos(mx+nx) = \cos (mx) \cos (nx) - \sin (mx) \sin (nx) - \cos (mx) \cos (nx) + \sin (mx) \sin (nx) = 2 \sin (mx) \sin (nx)$

Therefore,
$\displaystyle \int^\pi_{-\pi} \sin (mx)\sin(nx)dx = \int^\pi_{-\pi}\left[ \frac{\cos(mx-nx)-\cos(mx+nx)}{2} \right]dx$

if $m \neq n$

$
\begin{equation}
\begin{aligned}
\int^\pi_{-\pi} \sin (mx)\sin(nx)dx &= \frac{1}{2} \left[ \frac{\sin(mx-nx)}{(m-n)} - \frac{\sin(mx+nx)}{(m+n)} \right]^\pi_{-\pi}\\
\\
\int^\pi_{-\pi} \sin (mx)\sin(nx)dx &= \frac{1}{2} \left(\left[ \frac{\sin(m\pi - n \pi)}{(m-n)} - \frac{\sin(m\pi+n\pi)}{(m+n)} \right] - \left[ \frac{\sin(m(-\pi) - n(-\pi))}{(m-n)} - \frac{\sin(m(-\pi) + n (-\pi))}{(m+n)} \right] \right)\\
\\
&= 0
\end{aligned}
\end{equation}
$


if $m =n$,

$
\begin{equation}
\begin{aligned}
\int^\pi_{-\pi} \sin (mx) \sin(nx) dx &= \int^\pi_{-\pi} \left[ \frac{\cos (mx - mx) - \cos (mx + mx)}{2} \right] dx\\
\\
&= \frac{1}{2} \int^\pi_{-\pi} [\cos(0) - \cos(2mx)] dx\\
\\
&= \frac{1}{2} \int^\pi_{-\pi} [ 1 - \cos(mx)] dx\\
\\
&= \frac{1}{2} \left[ x - \frac{\sin(2mx)}{2m} \right]^\pi_{-\pi}\\
\\
&= \frac{1}{2} \left( \left[ \pi - \frac{\sin(2m\pi)}{m} \right] - \left[ (-\pi) - \frac{\sin(2m(-\pi))}{2m} \right] \right)\\
\\
&= \frac{1}{2} [ \pi + \pi]\\
\\
&= \frac{2\pi}{2} \\
\\
&= \pi
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...