Wednesday, August 9, 2017

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 32

int_1^2(ln(x))^2/x^3dx
If f(x) and g(x) are differentiable function, then
intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx
If we rewrite f(x)=u and g'(x)=v, them
intuvdx=uintvdx-int(u'intvdx)dx
Using the above method of integration by parts,
Let's first evaluate the indefinite integral,
int(ln(x))^2/x^3dx=(ln(x))^2int1/x^3dx-int(d/dx(ln(x))^2int(1/x^3)dx)dx
=(ln(x))^2(x^(-3+1)/(-3+1))-int(2ln(x)(1/x)(x^(-3+1)/(-3+1)))dx
=(ln(x))^2(x^(-2)/-2)-int(2ln(x)(1/x)(x^(-2))/-2)dx
=-1/(2x^2)(ln(x))^2+int(ln(x)/x^3)dx
again applying integration by parts
=-1/(2x^2)(ln(x))^2+ln(x)*int(1/x^3)dx-int(d/dx(ln(x)int(1/x^3)dx)dx
=-1/(2x^2)(ln(x))^2+ln(x)*(x^(-3+1)/(-3+1))-int(1/x)((x^-3+1)/(-3+1))dx
=-1/(2x^2)(ln(x))^2+ln(x)*(x^(-2)/-2)-int(1/(-2x^3))dx
=-1/(2x^2)(ln(x))^2-ln(x)/(2x^2)+1/2int(1/x^3)dx
=-1/(2x^2)(ln(x))^2-ln(x)/(2x^2)+1/2(x^(-3+1)/(-3+1))
=-1/(2x^2)(ln(x))^2-ln(x)/(2x^2)-1/(4x^2)
add a constant C to the solution,
=-1/(2x^2)((ln(x))^2+ln(x)+1/2)+C
Now let's evaluate definite integral,
int_1^2(ln(x))^2/x^3dx=[-1/(2x^2)((ln(x))^2+ln(x)+1/2)]_1^2
=[-1/(2*2^2)((ln(2))^2+ln(2)+1/2)]-[-1/(2*1^2)((ln(1))^2+ln(1)+1/2)]
=[-1/8(ln(2))^2-ln(2)/8-1/16+1/4]
=3/16-(ln(2))^2/8-ln(2)/8

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...