Friday, August 11, 2017

sum_(n=0)^oo n!(x/2)^n Find the values of x for which the series converges.

For the power series sum_(n=0)^oo n!(x/2)^n, we may apply Ratio Test.
In Ratio test, we determine the limit as:
lim_(n-gtoo)|a_(n+1)/a_n| = L
or
lim_(n-gtoo)|a_(n+1)*1/a_n| = L
 Then ,we follow the conditions:
a) L lt1 then the series converges absolutely
b) Lgt1 then the series diverges
c) L=1 or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.
The given power series sum_(n=0)^oo n!(x/2)^n has:
a_n =n!(x/2)^n
Then,
1/a_n=1/(n!)(2/x)^n
        =1/(n!)(2^n/x^n)
        =2^n/((n!)x^n)
a_(n+1) =(n+1)!(x/2)^(n+1)
            = (n+1)(n!) x^(n+1)/2^(n+1)
            = (n+1)(n!)(x^n*x)/(2^n*2)
            =((n+1)(n!)*x^n*x)/(2^n*2))
Applying the Ratio test on the power series, we set-up the limit as:
lim_(n-gtoo) |((n+1)(n!)*x^n*x)/(2^n*2)*2^n/((n!)x^n)|
Cancel out common factors: x^n, n! , and 2^n .
lim_(n-gtoo) |((n+1)x)/2|
Evaluate the limit.
lim_(n-gtoo) |((n+1)*x)/2| = |x/2|lim_(n-gtoo) |n+1|
                             = |x/2|* oo
                             = oo       
The limit value L= oo satisfies Lgt 1 for all x.
Therefore,  the power series sum_(n=0)^oo n!(x/2)^n  diverges for all x .
There is no interval for convergence.
Note: The radius of convergence is 0 . The x=0 satisfy the convergence at points where n!(x/2)^n=0 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...