Wednesday, August 30, 2017

Calculus: Early Transcendentals, Chapter 1, 1.6, Section 1.6, Problem 50

Evaluate the equation (a) $\ln (\ln x) = 1$ (b) $e^{ax} = Ce^{bx}$, where $a \neq b$ for $x$

a.) $\ln(\ln x) = 1$

$
\begin{equation}
\begin{aligned}
e^{\ln (\ln x)} &= e^1
&& \text{Raise in $e$ both sides to eliminate the first } \ln\\
\\
\ln x &= e^1
&& \text{Evaluate}\\
\\
e^{\ln x} &= e^{e^1}
&& \text{Repeat the first part and solve for } x\\
\\
x &= e^{e^1}
\end{aligned}
\end{equation}
$


b.) $e^{ax} = Ce^{bx}$

$
\begin{equation}
\begin{aligned}
\frac{e^{ax}}{e^{bx}} &= C
&& \text{Divide each side by } e^{bx}\\
\\
e^{ax - bx} &= C
&& \text{Apply the property of exponent}\\
\\
e^{x(a -b)} &= C
&& \text{Factor $x$ in the exponent}\\
\\
\ln e^{x(a - b)} &= \ln C
&& \text{Take ln of each side}\\
\\
x (a - b) &= \ln C
&& \text{Simplify}\\
\\
x &= \frac{\ln C}{a - b}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...