Sunday, August 20, 2017

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 6

Determine the vertex, focus and directrix of the parabola $\displaystyle 2x^2 + 6x + 5y + 10 = 0$ and sketch the graph.


$
\begin{equation}
\begin{aligned}

2x^2 + 6x + 5y =& -10
&& \text{Subtract } 10
\\
\\
2(x^2 + 3x + \quad ) + 5y =& -10
&& \text{Factor and group terms}
\\
\\
2 \left(x^2 + 3x + \frac{9}{4} \right) + 5y =& -10 + \frac{9}{2}
&& \text{Complete the square: add } \left( \frac{3}{2} \right)^2 = \frac{9}{4} \text{ on the left side and } \frac{9}{2} \text{ on the right side}
\\
\\
2 \left(x + \frac{3}{2} \right)^2 + 5y =& \frac{-11}{2}
&& \text{Perfect Square}
\\
\\
2 \left( x + \frac{3}{2} \right)^2 =& -5y - \frac{11}{2}
&& \text{Subtract } 5y
\\
\\
\left(x + \frac{3}{2} \right)^2 =& \frac{-5}{2} y - \frac{11}{4}
&& \text{Factor out } \frac{5}{2}
\\
\\
\left( x + \frac{3}{2} \right)^2 =& \frac{-5}{2} \left( y + \frac{22}{20} \right)
&&

\end{aligned}
\end{equation}
$


Now, the parabola has the form $(x - h)^2 = -4p(y - k)$ with vertex at $\displaystyle \left( \frac{-3}{2}, \frac{-22}{20} \right)$ that opens downward. Since $\displaystyle 4p = \frac{5}{2}$, we have $\displaystyle p = \frac{5}{8}$. It means that the focus is $\displaystyle \frac{5}{8}$ below to the vertex and the directrix is $\displaystyle \frac{5}{8}$ above the vertex. Thus, by using transformations, the focus is at

$\displaystyle \left( \frac{-3}{2}, \frac{-22}{20} \right) \to \left( \frac{-3}{2}, \frac{-22}{20} - \frac{5}{8} \right) = \left( \frac{-3}{2}, \frac{-69}{40} \right)$

and the directrix is the line $\displaystyle y = \frac{-22}{20} + \frac{5}{8} = \frac{-19}{40}$

Therefore, the graph is

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...