To evaluate the given integral problem int e^(sqrt(2x))dx us u-substituion, we may let:
u = 2x then du = 2 dx or (du)/2 = dx .
Plug-in the values u = 2x and dx = (du)/2 , we get:
int e^(sqrt(2x))dx =int e^(sqrt(u))* (du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int e^(sqrt(u))* (du)/2=1/2 int e^(sqrt(u)) du
Apply another set of substitution, we let:
w = sqrt(u)
Square both sides of w =sqrt(u), we get: w^2 =u
Take the derivative on each side, it becomes: 2w dw = du
Plug-in w =sqrt(u) and du = 2w dw , we get:
1/2 int e^(sqrt(u)) du =1/2 int e^(w) * 2w dw
= 1/2 * 2 inte^(w) *w dw
= int e^w * w dw .
To evaluate the integral further, we apply integration by parts:int f* g' = f*g - int g *f'
Let: f =w then f' = dw
g' = e^w dw then g = e^w
Applying the formula for integration by parts, we get:
int e^w * w dw = w*e^w - int e^w dw
= we^w -e^w +C
Recall we let: w =sqrt(u) and u = 2x then w =sqrt(2x) .
Plug-in w=sqrt(2x) on we^w -e^w +C , we get the complete indefinite integral as:
int e^(sqrt(2x))dx =sqrt(2x) e^(sqrt(2x)) -e^(sqrt(2x)) +C
Thursday, January 4, 2018
int e^(sqrt(2x)) dx Find the indefinite integral by using substitution followed by integration by parts.
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment