Monday, January 29, 2018

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 40

a.) Illustrate the graph of $\displaystyle f(x) = \frac{\sqrt{2x^2 + 1} }{3x - 5}$. How many horizontal and vertical asymptotes do you observe? Use the graph to estimate the values of the limits

$\displaystyle \lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$ and $\displaystyle \lim_{x \to - \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$








Based from the graph, there are two horizontal asymptotes $y = -0.5$ and $y = 0.5$ and the vertical asymptote is $\displaystyle x = 1.6, \lim_{x \to \infty} \frac{\sqrt{2x^2 + 1} }{3x - 5} = 0.5$ and $\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1} }{3x - 5} = -0.5$.

b.) Find values of $f(x)$ to give estimates of the limits in part (a).

$
\begin{array}{|c|c|}
\hline\\
\text{Values of $f(x)$ as $x$ approaches $\infty$}\\
x & f(x) \\
10 & 0.5671 \\
100 & 0.4794 \\
1000 & 0.4722 \\
10000 & 0.4715 \\
100000 & 0.4714 \\
1000000 & 0.4714 \\
\hline


\text{Values of $f(x)$ as $x$ aprroaches $- \infty$} & \\
x & f(x)\\
-10 & -0.4051\\
-100 & -0.4637\\
-1000 & -0.4706\\
-10000 & -0.4713 \\
-10000 & -0.4714\\
-1000000 & -0.4714\\
\hline

\end{array}
$

Based from the table, both values approaches $\pm 0.4714$ or close to $\pm 0.5$.

c.) Find the exact values of the limits in part (a)


$
\begin{equation}
\begin{aligned}

\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \cdot \frac{\displaystyle \frac{1}{\sqrt{x^2}}}{\frac{1}{x}} =& \lim_{x \to \infty} \frac{\displaystyle \sqrt{\frac{2 \cancel{x^2}}{\cancel{x^2}}} + \frac{1}{x^2} }{\displaystyle \frac{3 \cancel{x}}{\cancel{x}} - \frac{5}{x}}
\\
\\
=& \lim_{x \to \infty} \frac{\displaystyle \sqrt{2 + \frac{1}{x^2}}}{\displaystyle 3 - \frac{5}{x}}
\\
\\
=& \frac{ \displaystyle \lim_{x \to \infty} \sqrt{2 + \frac{1}{x^2}} }{\displaystyle \lim_{x \to \infty} 3 - \frac{5}{x} }
\\
\\
=& \frac{\displaystyle \sqrt{2 + \lim_{x \to \infty} \frac{1}{x^2} } }{\displaystyle 3 - \lim_{x \to \infty} \frac{5}{x}}
\\
\\
=& \frac{\sqrt{2 + 0}}{3 - 0}
\\
\\
=& \frac{\sqrt{2}}{3} \text{ or } 0.4714
\\
\\
\lim_{x \to - \infty} \frac{\sqrt{2x^2 + 1}}{-(3x - 5)} \cdot \frac{\displaystyle \frac{1}{\sqrt{x^2}}}{\displaystyle \frac{1}{x}} =& \lim_{x \to - \infty} \frac{\displaystyle \sqrt{\frac{2 \cancel{x^2}}{\cancel{x^2}}} + \frac{1}{x^2} }{\displaystyle \frac{5}{x} - \frac{3 \cancel{x}}{\cancel{x}} }
\\
\\
=& \lim_{x \to - \infty} \frac{\displaystyle \sqrt{2 + \frac{1}{x^2}}}{\displaystyle \frac{5}{x } - 3}
\\
\\
=& \frac{\displaystyle \lim_{x \to - \infty} \sqrt{2 + \frac{1}{x^2}} }{\displaystyle \lim_{x \to - \infty} \frac{5}{x} - 3}
\\
\\
=& \frac{\displaystyle \sqrt{2 + \lim_{x \to - \infty} \frac{1}{x^2}}}{\displaystyle \lim_{x \to - \infty} \frac{5}{x} - 3}
\\
\\
=& \frac{\sqrt{2 + 0}}{0 - 3}
\\
\\
=& \frac{\sqrt{2}}{- 3}
\\
\\
=& \frac{- \sqrt{2}}{3} \text{ or } -0.4714

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...