Monday, April 30, 2018

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 32

inttan^2(x)sec(x)dx
use the identity:tan^2(x)=sec^2(x)-1
inttan^2(x)sec(x)dx=int(sec^2(x)-1)sec(x)dx
=int(sec^3(x)-sec(x))dx
Now apply the Integral Reduction:intsec^n(x)dx=(sec^(n-1)(x)sin(x))/(n-1)+(n-2)/(n-1)intsec^(n-2)(x)dx
intsec^3(x)dx=(sec^2(x)sin(x))/2+1/2intsec(x)dx
Use the common integral:intsec(x)dx=ln(tan(x)+sec(x))
:.inttan^2(x)sec(x)dx=(sec^2(x)sin(x))/2+1/2intsec(x)dx-intsec(x)dx
=(sec^2(x)sin(x))/2-1/2intsec(x)dx
=(sec^2(x)sin(x))/2-1/2ln(tan(x)+sec(x))
add a constant C to the solution,
=(sec^2(x)sin(x))/2-1/2ln(tan(x)+sec(x))+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...