Saturday, April 28, 2018

College Algebra, Chapter 2, 2.1, Section 2.1, Problem 56

If point $M$ is the midpoint of the segment $AB$. Show that $M$ is equidistant from the vertices of triangle $ABC$




If $M$ is the midpoint of segment $AB$, then its coordinates is $\displaystyle \left( \frac{a}{2}, \frac{b}{2} \right)$
Thus, by using distance formula,

$
\begin{equation}
\begin{aligned}
d_{MA} &= \sqrt{\left( a- \frac{a}{2} \right)^2 + \left( 0 - \frac{b}{2} \right)^2 }\\
\\
d_{MA} &= \sqrt{\left( \frac{a}{2} \right)^2 + \left( - \frac{b}{2} \right)^2 }\\
\\
d_{MA} &= \sqrt{\frac{a^2}{4} + \frac{b^2}{4} }\\
\\
d_{MA} &= \frac{\sqrt{a^2 + b^2}}{2} \text{ units}
\end{aligned}
\end{equation}
$


Similarly,

$
\begin{equation}
\begin{aligned}
d_{MB} &= \sqrt{\left( 0- \frac{a}{2} \right)^2 + \left( b - \frac{b}{2} \right)^2 }\\
\\
&= \sqrt{\left( -\frac{a}{2} \right)^2 + \left( \frac{b}{2} \right)^2 }\\
\\
&= \sqrt{\frac{a^2}{4} + \frac{b^2}{4} }\\
\\
&= \frac{\sqrt{a^2 + b^2}}{2} \text{ units}
\end{aligned}
\end{equation}
$


And,

$
\begin{equation}
\begin{aligned}
d_{MC} &= \sqrt{\left( 0- \frac{a}{2} \right)^2 + \left( b - \frac{b}{2} \right)^2 }\\
\\
d_{MC} &= \sqrt{\left( -\frac{a}{2} \right)^2 + \left( - \frac{b}{2} \right)^2 }\\
\\
d_{MC} &= \sqrt{\frac{a^2}{4} + \frac{b^2}{4} }\\
\\
d_{MC} &= \frac{\sqrt{a^2 + b^2}}{2} \text{ units}
\end{aligned}
\end{equation}
$


It shows that $M$ is equidistant from the vertices of triangle $ABC$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...