Friday, April 13, 2018

Intermediate Algebra, Chapter 2, 2.1, Section 2.1, Problem 16

Solve the equation $2x + 4 - x = 4x - 5$, and check your solution. If applicable, tell whether the equation is an identity or contradiction.


$
\begin{equation}
\begin{aligned}

2x + 4 - x =& 4x - 5
&& \text{Given equation}
\\
x + 4 =& 4x - 5
&& \text{Combine like terms}
\\
x - 4x =& -5-4
&& \text{Subtract $(4x+4)$ from each side}
\\
-3x =& -9
&& \text{Combine like terms}
\\
\frac{-3x}{-3} =& \frac{-9}{-3}
&& \text{Divide both sides by $-3$}
\\
x =& 3
&&

\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

2(3) + 4 - 3 =& 4(3) - 5
&& \text{Substitute } x = 3
\\
6 + 4 - 3 =& 12 - 5
&& \text{Multiply}
\\
7 =& 7
&& \text{True}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...