Monday, September 24, 2018

Calculus: Early Transcendentals, Chapter 6, 6.3, Section 6.3, Problem 17

y=4x-x^2, y=3
The point of intersection of the curves will be ,
4x-x^2=3
4x-x^2-3=0
-x^2+4x-3=0
-(x^2-4x+3)=0
x^2-4x+3=0
factorizing the above equation,
(x-3)(x-1)=0
x=3 , x=1
The shell has radius (x-1) , circumference 2pi(x-1) and height (4x-x^2)-3
Volume generated by rotating the region bounded by the given curves about x=1 (V)=int_1^3(2pi)(x-1)(4x-x^2-3)dx
V=int_1^3(2pi)(4x^2-x^3-3x-4x+x^2+3)dx
V=(2pi)int_1^3(-x^3+5x^2-7x+3)dx
V=2pi[-x^4/4+5x^3/3-7x^2/2+3x]_1^3
V=2pi[-3^4/4+5/3*3^3-7/2*3^2+3*3]-2pi[-1^4/4+5/3*1^3-7/2*1^2+3*1]
V=2pi((-81/4+45-63/2+9)-(-1/4+5/3-7/2+3))
V=2pi(9/4-11/12)
V=2pi(16/12)
V=(8pi)/3

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...