Thursday, September 6, 2018

sum_(n=1)^oo (-1)^nx^n/n Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

To determine the interval of convergence for the given series: sum_(n=1)^oo(-1)^nx^n/n , we may apply Root Test.
In Root test, we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)=L
or 
lim_(n-gtoo) |a_n|^(1/n)=L
The series is  absolutely convergent if it satisfies the Root test condition: L lt1.
For the  given series: sum_(n=1)^oo(-1)^nx^n/n , we have:
a_n= (-1)^nx^n/n
 Then, set-up the limit as:
lim_(n-gtoo) |(-1)^nx^n/n|^(1/n) =lim_(n-gtoo) |x^n/n|^(1/n)
Note: |(-1)^n|=1 and 1*|x^n| =|x^n| .
Apply Law of exponents: (x/y)^n =x^n/y^n and (x^n)^m= x^(n*m).
lim_(n-gtoo) |x^n/n|^(1/n)=lim_(n-gtoo) |(x^n)^(1/n)/n^(1/n)|
                        =lim_(n-gtoo) |x^(n*1/n)/n^(1/n)|
                        =lim_(n-gtoo) |x^(n/n)/n^(1/n)|
                         =lim_(n-gtoo) |x^1/n^(1/n)|
                         =lim_(n-gtoo) |x/n^(1/n)|
Evaluate the limit.
lim_(n-gtoo) |x/n^(1/n)| =( lim_(n-gtoo) |x|)/( lim_(n-gtoo) |n^(1/n)|)
                     = |x|/|1|
                     = |x|
Thus, we have the limit value: L = |x| .
 To determine the interval of convergence , we plug-in L=|x| on the condition for convergent series: Llt1 .
|x| lt 1
-1ltxlt1
 The series may converge at L=1 . To verify this, we check for the possible convergence at the endpoints of the interval of x.
Using x=-1 on the series sum_(n=1)^oo(-1)^nx^n/n , we get: 
sum_(n=1)^oo(-1)^n(-1)^n/n=sum_(n=1)^oo(-1*-1)^n/n
                              =sum_(n=1)^oo 1^n/n
                              =sum_(n=1)^oo 1/n
The sum_(n=1)^oo 1/n is in a form of a p-series where p =1  satisfies 0ltplt=1 . According to p-series test of convergence, the series sum_(n=1)^oo 1/n^p is convergent if pgt1 and divergent if  0ltplt=1 .
Thus, the series sum_(n=1)^oo 1/n  is divergent at x=-1 .
Using x=1 on the series sum_(n=1)^oo(-1)^nx^n/n , we get: 
sum_(n=1)^oo(-1)^n1^n/n=sum_(n=1)^oo(-1*1)^n/n
                           =sum_(n=1)^oo (-1)^n/n
Applying alternating series test on the series sum (-1)^na_n where a_ngt=0 for all n , the series is convergent if we have:
1. lim_(n-gtoo) a_n = 0
2. a_n is a decreasing sequence
In the series sum_(n=1)^oo (-1)^n/n or sum_(n=1)^oo (-1)^n 1/n , the a_n= 1/n is decreasing sequence and 1/ngt=0 for all n .
Evaluating the limit:
lim_(n-gtoo) 1/n = 1/oo = 0
Thus,  sum_(n=1)^oo (-1)^n/n is convergent  at x=1 .
The series sum_(n=1)^oo (-1)^n/n has a positive and negative elements. We check for absolute or conditional convergence.
The sum a_n as sum_(n=1)^oo (-1)^n/n  is convergent based from alternating series criteria.
 The sum |a_n| as sum_(n=1)^oo |(-1)^n/n|  or  sum_(n=1)^oo 1/n is divergent based form p-series criteria.
 Thus, the series sum_(n=1)^oo (-1)^n/n is conditionally convergent at x=1 .
Therefore, the power series sum_(n=1)^oo(-1)^nx^n/n  has an interval of convergence: -1ltxlt=1 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...