Saturday, September 29, 2018

Calculus of a Single Variable, Chapter 9, 9.10, Section 9.10, Problem 20

Recall binomial series that is convergent when |x|lt1 follows:
(1+x)^k=sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!)x^n
or
(1+x)^k = 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4+...
To evaluate the given function f(x) = 1/sqrt(1-x^2) , we may apply radical property: sqrt(x) = x^(1/2) . The function becomes:
f(x) = 1/ (1-x^2)^(1/2)
Apply Law of Exponents: 1/x^n = x^(-n) to rewrite the function as:
f(x) = (1-x^2)^(-1/2)
or f(x)= (1 -x^2)^(-0.5)
This now resembles (1+x)^k form. By comparing "(1+x)^k " with "(1 -x^2)^(-0.5) or (1+(-x^2))^(-0.5) ”, we have the corresponding values:
x=-x^2 and k = -0.5 .
Plug-in the values on the aforementioned formula for the binomial series, we get:
(1-x^2)^(-0.5) =sum_(n=0)^oo (-0.5(-0.5-1)(-0.5-2)...(-0.5-n+1))/(n!)(-x^2)^n
=sum_(n=0)^oo (-0.5(-1.5)(-2.5)...(-0.5-n+1))/(n!)(-1)^nx^(2n)
=1 + (-0.5)(-1)^1x^(2*1) + (-0.5(-1.5))/(2!) (-1)^2x^(2*2)+ (-0.5(-1.5)(-2.5))/(3!)(-1)^3x^(2*3) +(-0.5(-1.5)(-2.5)(-3.5))/(4!)(-1)^4x^(2*4)+...
=1 + (-0.5)(-1)x^2 + (-0.5(-1.5))/(1*2) (1)x^4 + (-0.5(-1.5)(-2.5))/(1*2*3) (-1)x^6 +(-0.5(-1.5)(-2.5)(-3.5))/(1*2*3*4)(1)x^8+...
=1 +0.5x^2 + 0.75/2x^4 + 1.875/6x^6 +6.5625/24x^8+...
=1 + x^2/2+ (3x^4)/8 + (5x^6)/16 +(35x^8)/128+...
Therefore, the Maclaurin series for the function f(x) =1/sqrt(1-x^2) can be expressed as:
1/sqrt(1-x^2)=1 + x^2/2+ (3x^4)/8 + (5x^6)/16 +(35x^8)/128+...

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...