Sunday, September 16, 2018

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 18

From the table of integrals, we have a integration formula for inverse sine function as:
int arcsin(u/a)du = u*arcsin(u/a) +sqrt(a^2-u^2) +C
It resembles the given integral problem: int arcsin(4x)dx or int arcsin((4x)/1)dx where u =4x and a=1 ,
When we let u = 4x , we solve for the derivative of "u" as: du = 4 dx or (du)/4= dx .
Plug-in u = 4x and (du)/4=dx on the integral problem, we get:
int arcsin(4x)dx =int arcsin(u) * (du)/4
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int arcsin(u) * (du)/4 = 1/4int arcsin(u) du or 1/4int arcsin(u/1) du
Applying the integral formula for inverse sine function, we get:
1/4 int arcsin(u/1)du = (1/4) *[u*arcsin(u/1) +sqrt(1^2-u^2)] +C
= (1/4) *[u*arcsin(u) +sqrt(1-u^2)] +C
= (u*arcsin(u))/4 +sqrt(1-u^2)/4 +C
Plug-in u =4x on (u*arcsin(u))/4 +sqrt(1-u^2)/4 +C , we get indefinite integral as:
int arcsin(4x)dx =(4x*arcsin(4x))/4 +sqrt(1-(4x)^2)/4 +C
=(4x*arcsin(4x))/4 +sqrt(1-16x^2)/4 +C
= x*arcsin(4x) +sqrt(1-16x^2)/4 +C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...