Friday, November 30, 2018

Calculus of a Single Variable, Chapter 9, 9.2, Section 9.2, Problem 16

To verify if the given infinite series: sum_(n=1)^oo 2(-1/2)^n converges, recall that infinite series converge to a single finite value S if the limit of the partial sum S_n as n approaches oo converges to S . We follow it in a formula:
lim_(n-gtoo) S_n=sum_(n=1)^oo a_n = S .
To evaluate the sum_(n=1)^oo 2(-1/2)^n , we apply the Law of exponent : x^(n+m) = x^n*x^m .
Then, (-1/2)^n =(-1/2)^(n -1+1)
=(-1/2)^(n -1)*(-1/2)^1
= (-1/2)^(n -1)*(-1/2)
Plug-in (-1/2)^n =(-1/2)^(n -1)*(-1/2) , we get:
sum_(n=1)^oo 2(-1/2)^n =sum_(n=1)^oo 2*(-1/2)^(n -1)*(-1/2)
=sum_(n=1)^oo -1*(-1/2)^(n -1)
By comparing given infinite series sum_(n=1)^oo -1*(-1/2)^(n -1) with the geometric series form sum_(n=1)^oo a*r^(n-1) , we determine the corresponding values as:
a=-1 and r= -1/2 .
The convergence test for the geometric series follows the conditions:
a) If |r|lt1 or -1 ltrlt 1 then the geometric series converges to sum_(n=0)^oo a*r^n =sum_(n=1)^oo a*r^(n-1)= a/(1-r).
b) If |r|gt=1 then the geometric series diverges.
The r=-1/2 falls within the condition |r|lt1 since |-1/2|lt1 or |-0.5| lt1 .
Therefore, the series converges.

By applying the formula: sum_(n=1)^oo a*r^(n-1)= a/(1-r) , we determine that the given geometric series will converge to a value:

sum_(n=1)^oo2(-1/2)^n=sum_(n=1)^oo -1*(-1/2)^(n -1)
=(-1)/(1-(-1/2))
=(-1)/(1+1/2)
=(-1)/(2/2+1/2)
=(-1)/(3/2)
=(-1)*(2/3)
= -2/3 or -0.67 (approximated value)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...