Monday, November 26, 2018

Single Variable Calculus, Chapter 3, 3.7, Section 3.7, Problem 28

The equation $c(x) = 339 + 25x - 0.09x^2 + 0.0004 x^3$ represents the cost function for production of a commodity.
a.) Find and interpret $c'(100)$
b.) Compare $c'(100)$ with the cost of producing the 101st item.


$
\begin{equation}
\begin{aligned}
\text{a.) } c'(x) &= 25 - 0.18 x + 0.0012 x^2\\
\\
c'(100) &= 25 - 0.18(100) + 0.0012(100)^2\\
\\
c'(100) &= 19
\end{aligned}
\end{equation}
$

$c'(100)$ means that the cost per 100 units of production is changing at a rate of 19 $\displaystyle \frac{\text{unit cost}}{\text{unit production}}$

$
\begin{equation}
\begin{aligned}
\text{b.) } c(x) &= 339 + 25x - 0.09x^2 + 0.0004x^3\\
\\
c'(101) &= c(101) - c(100)\\
\\
&= 339 + 25(101) - 0.09 (101)^2 + 0.0004(101)^2 - \left[ 339 + 25 (100) - 0.09 (100)^2 + 0.0004 (100)^2\right]\\
\\
c'(101) & = 19.0304
\end{aligned}
\end{equation}
$

It means that the cost increases by 0.0304 as the number of unit production increases by 1 from 100.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...