Saturday, November 24, 2018

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 38

Solve the matrix equation $\displaystyle \frac{1}{2} (X - 2B) = A$ for the unknown matrix, $X$ or show that no solution exists, where

$\displaystyle A = \left[ \begin{array}{cc}
2 & 1 \\
3 & 2
\end{array} \right] \qquad B = \left[ \begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array} \right] \qquad C = \left[ \begin{array}{ccc}
0 & 1 & 3 \\
-2 & 4 & 0
\end{array} \right]$


$
\begin{equation}
\begin{aligned}

\frac{1}{2} (X - 2B) =& A
&& \text{Given equation}
\\
\\
X- 2B =& 2A
&& \text{Multiply both sides by scalar } 2
\\
\\
X =& 2A + 2B
&& \text{Add matrix } 2B
\\
\\
X =& 2 \left[ \begin{array}{cc}
2 & 1 \\
3 & 2
\end{array} \right] + 2 \left[ \begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array} \right]
&&
\\
\\
X =& \left[ \begin{array}{cc}
4 & 2 \\
6 & 4
\end{array} \right] + \left[ \begin{array}{cc}
2 & -4 \\
-4 & 8
\end{array} \right]
&&
\\
\\
X =& \left[ \begin{array}{cc}
6 & -2 \\
2 & 12
\end{array} \right]
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...