Sunday, December 2, 2018

Calculus: Early Transcendentals, Chapter 2, 2.3, Section 2.3, Problem 29

lim_(t->0) (1/(tsqrt(1+t)) - 1/t)
sol:
lim_(t->0) (1/(tsqrt(1+t)) - 1/t)
=> lim_(t->0) ((1- sqrt(1+t))/(tsqrt(1+t)) )
now simplify the numerator
1- sqrt(1+t) = (1- sqrt(1+t)) *((1+ sqrt(1+t))/(1+ sqrt(1+t)))
= (1^2- (sqrt(1+t))^2)/(1+ sqrt(1+t))
so,
lim_(t->0) ((1-sqrt(1+t))/(tsqrt(1+t)) )
=lim_(t->0)((1^2- (sqrt(1+t))^2)/(1+ sqrt(1+t)))/((tsqrt(1+t)))
= lim_(t->0) (-t/((1+ sqrt(1+t))(t(sqrt(1+t)))))
= lim_(t->0)(-1/((1+ sqrt(1+t))(sqrt(1+t))))
=(lim_(t->0)(-1))/ (lim_(t->0)((1+ sqrt(1+t))(sqrt(1+t)))) --------(1)
as,the denominator is
(lim_(t->0)(1+ sqrt(1+t)(sqrt(1+t))))
=(lim_(t->0)(1+ sqrt(1+t)) (lim_(t->0)(sqrt(1+t)))
as t-> 0 we get
(lim_(t->0)(1+ sqrt(1+t)) = (1+1) = 2
(lim_(t->0)(sqrt(1+t))) = 1
so,
(lim_(t->0)(1+ sqrt(1+t)) (lim_(t->0)(sqrt(1+t)))= (2) (1) =2
so, from (1)
we get
lim_(t->0)(-1)/ (lim_(t->0)(1+ sqrt(1+t)(sqrt(1+t)))) = -1 /2
there fore
lim_(t->0) (1/(tsqrt(1+t)) - 1/t) = -1/2

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...