Tuesday, December 25, 2018

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 24

Find the indefinite integral $\displaystyle \int \frac{dt}{\cos ^2 t \sqrt{1 + \tan t}} dx$


$
\begin{equation}
\begin{aligned}

\int \frac{dt}{\cos ^2 t \sqrt{1 + \tan t}} =& \int \frac{1}{cos ^2 t \sqrt{1 + \tan t}} dt
\\
\\
\int \frac{dt}{\cos ^2 t \sqrt{1 + \tan t}} =& \int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt

\end{aligned}
\end{equation}
$



If we let $\displaystyle u = 1 + \tan t$, then $\displaystyle du = \sec^2 t dt$. And


$
\begin{equation}
\begin{aligned}

\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& \int \frac{1}{\sqrt{1 + \tan t}} \sec ^2 t dt
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& \int \frac{1}{\sqrt{u}} du
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& \int u^{\frac{-1}{2}} du
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& \frac{u^{\frac{-1}{2} + 1} }{\displaystyle \frac{-1}{2} + 1} + C
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& \frac{u^{\frac{1}{2}}}{\displaystyle \frac{1}{2}} + C
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& 2u^{\frac{1}{2}} + C
\\
\\
\int \frac{\sec ^2 t}{\sqrt{1 + \tan t}} dt =& 2 (1 + \tan t)^{\frac{1}{2}} + C

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...