Monday, December 17, 2018

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 38

Find all real solutions of $8x^2 - 6x - 9 = 0$.


$
\begin{equation}
\begin{aligned}

8x^2 - 6x - 9 =& 0
&& \text{Given}
\\
\\
8x^2 - 6x =& 9
&& \text{Add 9}
\\
\\
x^2 - \frac{6}{8} x =& \frac{9}{8}
&& \text{Divide both sides of the equation by 8 to make the coefficient of $x^2$ equal to 1}
\\
\\
x^2 - \frac{6}{8} x + \frac{9}{64} =& \frac{9}{8} + \frac{9}{64}
&& \text{Complete the the square: add } \left( \frac{\displaystyle \frac{-6}{8}}{2} \right)^2 = \frac{9}{64}
\\
\\
\left( x - \frac{3}{8} \right)^2 =& \frac{81}{64}
&& \text{Perfect square, get the LCD of the right side}
\\
\\
x - \frac{3}{8} =& \pm \sqrt{\frac{81}{64}}
&& \text{Take the square root}
\\
\\
x =& \frac{3}{8} \pm \frac{9}{8}
&& \text{Add } \frac{3}{8}
\\
\\
x =& \frac{3}{2} \text{ and } x = \frac{-3}{4}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...