Thursday, January 3, 2019

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 36

int_(pi/4)^(pi/2)cot^3(x)
Let's evaluate the indefinite integral by rewriting the integrand as,
intcot^3(x)=intcot(x)cot^2(x)dx
Now use the identity:cot^2(x)=csc^2(x)-1
=intcot(x)(csc^2(x)-1)dx
=int(cot(x)csc^2(x)-cot(x))dx
=intcot(x)csc^2(x)dx-intcot(x)dx
Now let's evaluate intcot(x)csc^2(x)dx by integral substitution,
Let u=cot(x)
=>du=-csc^2(x)dx
intcot(x)csc^2(x)dx=intu(-du)
=-intudu
=-u^2/2
substitute back u=cot(x)
=-1/2cot^2(x)
Use the common integral intcot(x)dx=ln|sin(x)|
:.intcot^3(x)dx=-1/2cot^2(x)-ln|sin(x)|+C , C is a constant
Now let' evaluate the definite integral,
int_(pi/4)^(pi/2)cot^3(x)dx=[-1/2cot^2(x)-ln|sin(x)|}_(pi/4)^(pi/2)
=[-1/2cot^2(pi/2)-ln|sin(pi/2)|]-[-1/2cot^2(pi/4)-ln|sin(pi/4)|]

=[-1/2*0-ln(1)]-[-1/2(1)^2-ln(1/sqrt(2))]
=[0]+1/2+ln(1/sqrt(2))
=1/2+ln(2^(-1/2))
=1/2-1/2ln(2)
=1/2(1-ln(2))

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...