Thursday, January 24, 2019

Single Variable Calculus, Chapter 8, 8.4, Section 8.4, Problem 52

Find the indefinite integral $\displaystyle \int \sec^4 \left( \frac{x}{2} \right) dx$. Illustrate by graphing both the integrand and its antiderivative (taking $c = 0$).

Let $\displaystyle z = \frac{x}{2}$, then $\displaystyle dz = \frac{1}{2} dx$, so $dx = 2dz$. Thus,

$
\begin{equation}
\begin{aligned}
\int sec^4 \left( \frac{x}{2} \right) dx &= \int \sec^4 z \cdot 2 dz\\
\\
\int sec^4 \left( \frac{x}{2} \right) dx &= 2 \int \sec^4 z dz\\
\\
&= 2 \int \sec^2 z \cdot \sec^2 z dz
\end{aligned}
\end{equation}
$


By using Integration by parts...

If we let $u = \sec^2 z$, then $du = 2 \sec z(\sec z \tan z) dz$ and if $dv = \sec^2 z dz$, then $\displaystyle v = \int \sec^2 z dz = \tan z$
So,

$
\begin{equation}
\begin{aligned}
\int \sec^2 z - \sec^2 z dz &= uv - \int v du = \sec^2 z \tan z - \int 2 (\tan z) \sec z (\sec z \tan z) dz\\
\\
&= \sec^2 z \tan z - \int 2 \sec^2 z \tan^2 z dz && \text{recall that } \tan^2 z = \sec^2 z - 1\\
\\
&= \sec^2 z \tan z - 2 \int \sec^2 z (\sec^2 z - 1) dz\\
\\
&= \sec^2 z \tan z - 2 \int \sec^4 z dz + 2 \int \sec^2 z dz
\end{aligned}
\end{equation}
$


By combining like terms,

$
\begin{equation}
\begin{aligned}
\int \sec^4 z dz &= \sec^2 z \tan z - 2 \int \sec^4 z dz + 2 \tan z\\
\\
\int \sec^4 z dz + 2 \int \sec^4 zdz &= \sec^2 z \tan z + 2 \tan z + c\\
\\
3 \int \sec^4 z dz &= \sec^2 z \tan z + 2 \tan z + c\\
\\
\int \sec^4 z dz &= \frac{\sec^2 z \tan z + 2 \tan z}{3} + c\\
\\
2\int \sec^4 z dz &= 2 \left[ \frac{\sec^z \tan z + z \tan z}{3} \right] +c\\
\\
2\int \sec^4 z dz &= \frac{2}{3} \left[ \sec^2 z \tan z + 2 \tan z \right] + c

\end{aligned}
\end{equation}
$


But $\displaystyle z = \frac{x}{2}$, so
$\displaystyle \int \sec^4 \left( \frac{x}{2} \right) dx = \frac{2}{3} \left[ \sec^2 \left( \frac{x}{2} \right) \tan \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) \right] $

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...