Friday, January 25, 2019

int (x^3+3x-4)/(x^3-4x^2+4x) dx Use partial fractions to find the indefinite integral

For the given integral problem: int (x^3+3x-4)/(x^3-4x^2+4x)dx , we may simplify  by applying long division since the highest degree of x is the same from numerator and denominator side.
(x^3+3x-4)/(x^3-4x^2+4x) = 1+(4x^2-x-4)/(x^3-4x^2+4x) .
Apply partial fraction decomposition on the expression (4x^2-x-4)/(x^3-4x^2+4x) .
The pattern on setting up partial fractions will depend on the factors of the denominator. For the given problem, the factored form of the denominator will be:
(x^3-4x^2+4x) =(x)(x^2-4x+4)
                            =(x) (x-2)(x-2)  or x(x-2)^2
For the linear factor (x) , we  will have partial fraction: A/x
For the repeated linear factor (x-2)^2 , we will have partial fractions: B/(x-2) + C/(x-2)^2 .
The rational expression becomes:
(4x^2-x-4)/(x^3-4x^2+4x) =A/x +B/(x-2) + C/(x-2)^2
Multiply both side by the LCD =x(x-2)^2 :
((4x^2-x-4)/(x^3-4x^2+4x)) (x(x-2)^2)=(A/x +B/(x-2) + C/(x-2)^2)(x(x-2)^2)
4x^2-x-4=A*(x-2)^2+B*(x(x-2)) + C*x
We apply zero-factor property on x(x-2)^2 to solve for value we can assign on x.
x=0
x-2 = 0 then x=2 .
To solve for A , we plug-in x=0 :
4*0^2-0-4=A*(0-2)^2+B*(0(0-2)) + C*0
0-0-4 = A*(-2)^2 +0 +0
-4 =4A
-4/4 =(4A)/4
A =-1
To solve for C , we plug-in x=2 :
4*2^2-2-4=A*(2-2)^2+B*(2(2-2)) + C*2
16-2-4 = A*0 +B*0 +2C
10= 0 + 0 +2C
10 =2C
(10)/2= (2C)/2
C=5
To solve for B, plug-in x=1 ,A=-1 , and C=5 :
 
4*1^2-1-4=(-1)*(1-2)^2+B*(1(1-2)) + 5*1
4-1-4= (-1)*(-1)^2+B(1*(-1)) +5
-1= -1-B +5
-1= -B+4
-1-4= -B
-5=-B
(-5)/(-1) = (-B)/(-1)
B =5
Plug-in A = -1 , B =5, and C=5 , we get the partial decomposition:
(4x^2-x-4)/(x^3-4x^2+4x) =-1/x +5/(x-2) + 5/(x-2)^2
 Then the integrand becomes:
(x^3+3x-4)/(x^3-4x^2+4x) = 1+(4x^2-x-4)/(x^3-4x^2+4x) .
                    =1-1/x +5/(x-2) + 5/(x-2)^2
 Apply the basic integration property:int (u+-v) dx = int (u) dx +- int (v) dx .
int (x^3+3x-4)/(x^3-4x^2+4x) dx = int [1-1/x +5/(x-2) + 5/(x-2)^2] dx
            =int1 dx - int 1/x dx +int 5/(x-2)dx + int 5/(x-2)^2dx
 
Apply basic integration property:  int(a) dx = ax+C
int1 dx = 1x or x
Apply integration formula for logarithm: int 1/u du = ln|u|+C .
int 1/x dx=ln|x|
int 5/(x-2)dx= int 5/udu
                  = 5ln|u|
                 =5 ln|x-2|
Note: Let u =x-2 then du = dx .
Apply the Power Rule for integration: int (u^n) dx =u^(n+1)/ (n+1) +C .
int 5/(x-2)^2dx=int 5/u^2du
                    =int 5u^(-2)du
                     = 5 * u^(-2+1)/(-2+1)
                     = 5* u^-1/(-1)
                     = -5/u
                     = -5/(x-2)
Note: Let u =x-2 then du = dx
Combining the results, we get the indefinite integral as:
int (x^3+3x-4)/(x^3-4x^2+4x)dx =x-ln|x| +5 ln|x-2|-5/(x-2)+C
http://tutorial.math.lamar.edu/Classes/CalcII/PartialFractions.aspx

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...