Sunday, April 7, 2019

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 20

Find all real solutions of the equation $\displaystyle \frac{10}{x} - \frac{12}{x - 3} + 4 = 0$


$
\begin{equation}
\begin{aligned}

\frac{10}{x} - \frac{12}{x - 3} + 4 =& 0
&& \text{Given}
\\
\\
\frac{10}{x} - \frac{12}{x - 3} =& -4
&& \text{Subtract}4
\\
\\
10(x - 3) - 12(x) =& -4x(x - 3)
&& \text{Multiply the LCD } x(x - 3)
\\
\\
10x - 30 - 12x =& -4x^2 + 12x
&& \text{Expand}
\\
\\
4x^2 - 14x - 30 =& 0
&& \text{Combine like terms}
\\
\\
x^2 - \frac{7}{2} x - \frac{15}{2} =& 0
&& \text{Divide both sides of the equation by } 4
\\
\\
x^2 - \frac{7}{2} x =& \frac{15}{2}
&& \text{Add } \frac{15}{2}
\\
\\
x^2 - \frac{7}{2} x + \frac{49}{16} =& \frac{15}{2} + \frac{49}{16}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-7}{2}}{2} \right)^2 = \frac{49}{16}
\\
\\
\left(x - \frac{7}{4} \right)^2 =& \frac{169}{16}
&& \text{Perfect Square}
\\
\\
x - \frac{7}{4} =& \pm \sqrt{\frac{169}{16}}
&& \text{Take the square root}
\\
\\
x =& \frac{7}{4} \pm \frac{13}{4}
&& \text{Add } \frac{7}{4} \text{ and simplify}
\\
\\
x =& 5 \text{ and } x = \frac{-3}{2}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...