Monday, April 8, 2019

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 40

Solve the matrix equation $2X + C = 5A$ for the unknown matrix, $X$ or show that no solution exists, where

$\displaystyle A = \left[ \begin{array}{cc}
2 & 1 \\
3 & 2
\end{array} \right] \qquad B = \left[ \begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array} \right] \qquad C = \left[ \begin{array}{ccc}
0 & 1 & 3 \\
-2 & 4 & 0
\end{array} \right]$


$
\begin{equation}
\begin{aligned}

2X + C =& 5A
&& \text{Given equation}
\\
\\
2X =& 5A - C
&& \text{Subtract matrix } C
\\
\\
X =& \frac{1}{2} (5A - C)
&& \text{Multiply each side by scalar } \frac{1}{2}
\\
\\
X =& \frac{1}{2} \left( 5\left[ \begin{array}{cc}
2 & 1 \\
3 & 2
\end{array} \right] - \left[ \begin{array}{ccc}
0 & 1 & 3 \\
-2 & 4 & 0
\end{array} \right] \right)
&&
\\
\\
X =& \frac{1}{2} \left( \left[ \begin{array}{cc}
10 & 5 \\
15 & 10
\end{array} \right] - \left[ \begin{array}{ccc}
0 & 1 & 3 \\
-2 & 4 & 0
\end{array} \right] \right)
&&

\end{aligned}
\end{equation}
$


The given equation has no solution because we can't subtract matrices of different dimensions.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...