Thursday, April 25, 2019

int_0^1 xe^(x^2) dx Use integration tables to evaluate the definite integral.

For the given problem: int_0^1 xe^(x^2) , we may first  solve for its indefinite integral. Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
We omit the arbitrary constant C when we have a boundary values: a to b. We follow formula: int_a^b f(x) dx = F(x)|_a^b .
 Form the table of integrals, we follow the indefinite integral formula for exponential function as:
int xe^(-ax^2) dx = - 1/(2a)e^(-ax^2) +C
By comparison of -ax^2  with x^2 shows that we let a= -1 .
Plug-in a=-1 on -ax^2 for checking, we get: - (-1) x^2= +x^2 or x^2 .
Plug-in a=-1 on  integral formula, we get:
int_0^1 xe^(x^2) =- 1/(2(-1))e^((-(-1)x^2))| _0^1
              =- 1/(-2)e^((1*x^2))| _0^1
              = 1/2e^(x^2)| _0^1
Applying definite integral formula: F(x)|_a^b = F(b)-= F(a) .
1/2e^(x^2)| _0^1 =1/2e^(1^2) -1/2e^(0^2)
             =1/2e^(1) -1/2e^(0)
             =1/2e -1/2 *1
             = 1/2e -1/2 or 1/2(e-1)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...