Sunday, June 23, 2019

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 84

Differentiate $s = \sqrt[4]{t^4 + 3t^2 + 8} \cdot 3t$

By using Product Rule and Chain Rule, we get

$
\begin{equation}
\begin{aligned}
s'(t) &= \left( t^4 + 3t^2 + 8 \right)^{\frac{1}{4}} \cdot \frac{d}{dt} (3t) + (3t) \cdot \frac{d}{dt} \left( t^4 + 3t^2 + 8 \right)^{\frac{1}{4}}\\
\\
s'(t) &= \left( t^4 +3t^2 + 8 \right)^{\frac{1}{4}} (3) + 3t \cdot \frac{1}{4} \left( t^4 + 3t^2 + 8 \right)^{\frac{1}{4} - 1} \cdot
\frac{d}{dt} \left( t^4 + 3t^2 + 8 \right)\\
\\
s'(t) &= 3 \left( t^4 +3t^2 + 8 \right)^{\frac{1}{4}} + \frac{3t}{4} \left( t^4 +3t^2 + 8 \right)^{-\frac{3}{4}} (4t^3 + 6t)\\
\\
s'(t) &= 3\left( t^4 +3t^2 + 8 \right)^{\frac{1}{4}} + \frac{3t^4 + \frac{9t^2}{2}}{\left( t^4 +3t^2 + 8 \right)^{\frac{3}{4}}}\\
\\
s'(t) &= \frac{3\left( t^4 +3t^2 + 8 \right) + 3t^4 + \frac{9}{2}t^2 }{\left( t^4 +3t^2 + 8 \right)^{\frac{3}{4}}}\\
\\
s'(t) &= \frac{3t^4 + 9t^2 + 24 + 3t^4 + \frac{9}{2}t^2 }{\left( t^4 +3t^2 + 8 \right)^{\frac{3}{4}}}\\
\\
s'(t) &= \frac{6t^4 + \frac{27}{2}t^2 + 24 }{\left( t^4 +3t^2 + 8 \right)^{\frac{3}{4}}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...